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Abstract

A physics-based, systematically coupled, multidisciplinary prediction tool (MUTE) for rotorcraft
noise was developed and validated with a wide range of flight configurations and conditions.
MUTE is an aggregation of multidisciplinary computational tools that accurately and efficiently
model the physics of the source of rotorcraft noise, and predict the noise at far-field observer
locations. It uses systematic coupling approaches among multiple disciplines including
Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD), and high-
fidelity acoustics. Within MUTE, advanced high-order CFD tools are used around the rotor blade
to predict the transonic flow (shock wave) effects, which generate the high-speed impulsive
noise. Predictions of the blade-vortex interaction noise in low speed flight are also improved by
using the Particle Vortex Transport Method (PVTM), which preserves the wake flow details
required for blade/wake and fuselage/wake interactions. The accuracy of the source noise
prediction is further improved by utilizing a coupling approach between CFD and CSD, so that
the effects of key structural dynamics, elastic blade deformations, and trim solutions are
correctly represented in the analysis. The blade loading information and/or the flow field
parameters around the rotor blade predicted by the CFD/CSD coupling approach are used to
predict the acoustic signatures at far-field observer locations with a high-fidelity noise
propagation code (WOPWOP3). The predicted results from the MUTE tool for rotor blade
aerodynamic loading and far-field acoustic signatures are compared and validated with a

variation of experimental data sets, such as UH60-A data, DNW test data and HART 11 test data.
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Chapter |

Introduction & Background

MUTE is a systematic combination of multidisciplinary analysis tools that accurately and
efficiently models the physics of the source of the rotorcraft noise, and predicts the noise at far-
field observer locations. MUTE uses a systematic coupling approach among multiple disciplines
including Computational Fluid Dynamics (CFD) with high-fidelity wake modeling,
Computational Structural Dynamics (CSD), and high-fidelity acoustics. Figure 1.1 illustrates
MUTE with its multidisciplinary analysis tools.

CAMRAD II, DYMORE
Multi-body, Nonlinear

Computational
Structure Dynamics
(CSD)

| Noise Propagation
(WopWop, RNM)

High-order
Computational Fluid
Dynamics (CFD) >

High-fidelity Wake Modeling
(Particle-VTM)

Shock Wave : " Blade-Vortex

Boundary Layer ~Interaction

FUN3D, OVERFLOW
NASA RANS Flow Solver

Figure 1.1: MUTE uses a systematic coupling approach among multiple disciplines, to
accurately and efficiently predict rotorcraft noise.

The objective of developing the MUTE tool is to accurately model the physics of the
noise source, and to understand the basis of the noise generation from rotorcraft in a wide range
of flight regimes. Within MUTE, advanced high-order CFD tools are used around the rotor
blade to predict the transonic flow (shock wave) effects, which generate the high-speed
impulsive noise. Predictions of the blade-vortex interaction noise in low speed flight are also



improved by using the Particle Vortex Transport Method (PVTM), which preserves the wake
flow details required for blade/wake and fuselage/wake interactions. The accuracy of the source
noise prediction is further improved by utilizing a coupling approach between CFD and CSD, so
that the effects of key structural dynamics, elastic blade deformations, and trim solutions are
correctly represented in the analysis.

To efficiently and successfully develop the MUTE tool, the project was divided into 3
major tasks. Within each of them, an essential element of the MUTE tool was developed and
validated during the first two years. The integration of these elements and the validation of the

whole MUTE tool were undertaken in the third year of the project.

The purpose of the first task (task 1) was to

Computational Structure

Dynamics (CSD) develop high order near blade CFD algorithms

coupled with CSD for accurate source noise

I High-order prediction. In this task, the effect of high-order

Computational Fluid | CFD algorithms on the prediction of rotor blade
Dynamics (CFD)

loading was investigated. The effect of

conventional wake modeling/capturing methods, such as free-wake and CFD with overset-grid
methods, on the prediction of rotor blade loading were also studied and compared with the new
PVTM method.

The second task (task 2) was to apply

High-order High-fidelity Wake
Computational Fluid | Modeling and validate the Particle Vortex

Dynamics (CFD)
Transport Method (PVTM) for

accurate wake modeling. In this task, predictions from the PVTM method developed by the Co-I

were compared with the UH60-a blade loading test data, and the BVI loading data from the
HART Il test.

The purpose of the final task

High-order Noise Propagation
Computational Fluid |« s (WopWoS gNM) (task 3) was to develop an
Dynamics (CFD) improved and efficient interface

with the acoustic propagation code (WOPWOP 3). A python based control script was developed



to control the coupling processes among CFD, CSD and WOPWOP 3. For acoustic predictions,
both permeable surface and impermeable surface methods were implemented in the coupling

process. The acoustic prediction results were compared with the DNW high-speed test case, and
the HART Il BVI noise case.



Chapter 11

CFD Coupled with CSD for Accurate Source Noise Prediction

2.1 Computational Fluid Dynamics (CFD) / Computational Structural Dynamics (CSD)
Coupling Procedure

Aerodynamic/structural analysis of helicopter rotors is a challenging problem that requires
multidisciplinary methods to predict the rotor performance. In general, a finite element
computational structural dynamics (CSD) analysis can predict blade motions and structural
dynamics accurately if correct surface aerodynamic loadings are provided. However, due to the
overwhelming complexity of the comprehensive analysis, the aerodynamic components inside a
CSD analysis are based on lower-order lifting line theory with wake/inflow models and two-
dimensional airfoil tables. These cannot physically model some complicated phenomena such as
unsteady, three-dimensional viscous flow-fields, transonic flow with shocks, reverse flow and
dynamic stall. On the other hand, computational fluid dynamics (CFD) analysis will provide high
fidelity, nonlinear aerodynamics if the elastic rotor motions can be obtained from a CSD
analysis. Thus, combining CFD and CSD as a systematic rotorcraft analysis tool is getting more
and more attention.

Coupling between CFD and CSD can be accomplished in two ways. The first method is
loose (weak) coupling methodology, where information is transferred on a one per revolution,
periodic basis between CFD and CSD. The second is tight (strong) coupling, where the CFD and
CSD are coupled at every time step and marched forward in time simultaneously. Although tight
coupling is more rigorous and can solve both steady and unsteady problems, the choice of
algorithm is not trivial and many issues have to be carefully considered. On the other hand, the
loose coupling approach is more mature and has been widely used in predicting blade loadings at
different steady flight conditions.

Currently, a Reynolds averaged Navier-Stokes CFD code (TURNS) [2.1] and a rotorcraft
comprehensive analysis/fCSD code (CAMRAD I1I) [2.2] have been coupled for all of the
following simulation results. The loose coupling approach has been used for these validation

cases since they are all under steady and periodic flight conditions.
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Figure 2.1 CFD/CSD Coupling Procedures between TURNS/Free-Wake and CAMRAD
(Red Box --- Main CFD, CSD and Wake Analysis Solvers)
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(Black Box --- Data/Information exchanged between these main solvers)




As shown in Figure 2.1, during the coupling procedure, a CAMRAD II blade motion file
is first generated with the position of the un-deflected blade quarter chord and the relative
displacement of three translations and three rotations of the deflected quarter chord as a function
of the radial location and azimuth angle. TURNS reads this file as input, deforms the grid, and
computes the results for the next revolution with these motions. To improve convergence, a
“delta” method has been used to feed back the loading into CAMRAD II. The blade loading
increment, AF, is updated from the difference between the CFD loads and the comprehensive
analysis calculations,

AR = AR +(FS° -F57) . (1)

In this manner, it is not necessary to separate out the lifting line analysis embedded inside the
comprehensive analysis code (CAMRAD I1). CAMRAD |1 uses this delta force file as input for
the next iteration. The coupling iterations repeat the above procedure until the predicted loading

between two iterations is converged.
2.2 Rotorcraft Wake Capturing/Modeling Methods Studies

For rotorcraft aeromechanics simulation, correctly capturing the wake effects is very
important under many flight conditions. Traditionally, there are two ways to capture/model
rotorcraft wake effect for CFD simulations. First is the free-wake method, which is based on
potential flow theory and is dependent on empirical inputs. The second is the CFD overset grid
methodology, where a large background grid is used with CFD to directly capture the wake
effect from the blade. This is a physics based, high resolution wake capturing method. However,
the results are heavily dependent on the background grid resolution, thus are limited by the
available computational resources. Additionally, the numerical dissipation embedded in the
algorithm may diffuse the tip vortex too rapidly.

A new Particle Vortex Transport Method (PVTM) [2.3] has been developed under another
NRA contract (NNLO7AA32C). This is also a physics based high-fidelity wake modeling
method, where the incompressible vortex transport equation is solved using a Lagrangian

approach.



In task 1, the first two wake capturing/modeling methods, overset grid and free-wake, were
investigated and validated with UH60a experimental data to assess the advantages and
limitations of these approaches during different flight conditions. Then, the overset grid
methodology was applied to the DNW high-speed case and HART Il baseline BVI case, to
obtain more accurate noise source prediction for further acoustic analysis.

In task 2, the PVTM method was utilized and validated against the same experimental data

to assess the model limitations and to improve the accuracy and efficiency of the approach.

2.2.1 CFD with overset grid methodology simulation results and discussions for UH60a
high-speed level flight, low-speed level flight and dynamic stall flight conditions

Figure 2.2 Overset Grid (near body grid + background grid)

In the overset grid method, the full grid around the rotor was divided into two parts, a
very fine near-body grid to simulate the flowfield around the blade and a large cylindrical
background grid to capture the wake effects. The RANS solver was used for both grids, thus this
method can provide physics based high-fidelity flow simulations. A typical overset grid used by
TURNS is shown in Figure 2.2, where the near-body grid has 3.2 million grid points and the



background grid has 2.2 million grid points. This method is also used by NASA with the
OVERFLOW CFD code.

The first set of experimental/flight test data used in this project was for a UH-60A
helicopter in level flight. The data were obtained during the NASA/Army UH-60A Airloads
program. Currently, the database provides the aerodynamic pressure, rotor forces and moments
etc. at 9 span locations r/R = 0.225, 0.40, 0.55, 0.675, 0.775, 0.865, 0.92, 0.965, and 0.99, for
three level flight conditions, allowing for the validation of the aerodynamic models. These three
flight conditions are: a high-speed level flight (counter no. 8534) with an advance ratio 0.368, a
low-speed level flight (counter no. 8513) with an advance ratio 0.149, and a high-thrust dynamic
stall flight (counter no. 9017) with an advance ratio 0.237. The blade loading predictions from
CFD with overset grid coupled with CSD are compared with these test data and are discussed in

the following sections for all three flight conditions.

2.2.1.1 UH-60A High-speed Level Flight Results and Discussions (c8534)
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Figure 2.3 Convergence History (Blade Loading Prediction by TURNS at 96.5% Span)
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For the UH-60A test, flight test counter number 8534, is a high-speed level flight case,
where the advance ratio is 0.368. The rotor speed is 258 RPM, with a tip Mach number 0.6415.
The trimmed thrust is at Ct/c = 0.08433. As shown in Figure 2.3, it takes 7 CFD/CSD coupling
iterations to get a converged result for this case. As shown in Figures 2.4 and 2.5, the total
normal forces and pitch moments are in good agreement with the flight test data. Especially in
the tip region, the near-body CFD solver has accurately captured the transonic flow phenomena
and the shock wave interaction at the advancing side. This is important for the improved
prediction of these forces and moments in the tip region compared to the comprehensive analysis

simulation.

2.2.1.2 UH-60A Low-speed Level Flight Results and Discussions (c8513)
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Figure 2.6 Convergence History (Blade Loading Prediction by TURNS at 96.5% Span, c8513)
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The flight test counter number 8513 is a low-speed level flight case with an advance ratio
of 0.149. The rotor speed is also 258 RPM, with a tip Mach number 0.6646. The trimmed thrust
is slightly lower than c8534, at C+/c = 0.0763. As shown in Figure 2.6, it also takes 7 CFD/CSD
coupling iterations to get a converged result for this case. However, because of the low free-
stream velocity, the CFD requires two revolutions per iteration to obtain a periodic solution. In
general, the total normal forces and pitch moments are also in good agreement with the
experimental data as shown in Figures 2.7 and 2.8. Since this is a low-speed level flight case, the
blade vortex interaction is not dominant. It can be seen from the test data that there are no high-
frequency BVI effects on the blade loading. However, the tip vortex wake effect from the
preceding blade is still represented by low-frequency blade loading variations, which are just
fairly predicted by the CFD overset method. Some of the tip vortex effects from the preceding
blade are diffused by the overset methodology, and improvement of the low-speed CFD

predictions was investigated with the PVTM method.

2.2.1.2 UH-60A High-thrust Dynamic Stall Flight Results and Discussions (c9017)
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Figure 2.9 Convergence History (Blade Loading Prediction by TURNS at 96.5% Span, c9017)
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The flight test c9017 is an intermediate speed case with advance ratio of 0.237, high
thrust with C+/oc at 0.129, and level flight test point flown at 17,000 ft. This is a challenging
rotorcraft test case due to the wide effects of unsteady flow conditions, especially the dynamic
stall effects, with noticeable wake interactions.

As shown in Figure 2.9, it takes 9 iterations to get a fairly converged result for this case.
It is difficult to obtain a converged result at the tip region on the retreating side due to the strong
unsteady effects from the dynamic stall. As for the forces and moments comparison, as shown in
Figures 2.10 and 2.11, reasonable agreement is still reached between the CFD predictions and
the flight test data. In Figure 2.10, the total normal forces are matched with the experiment,
except at the root region, r/R = 0.40, where the rotor hub effects are not simulated by CFD. The
low-frequency wake effect from the preceding blade is also captured. In Figure 2.11, it can be
seen that the two dynamic stall peaks at the tip region in retrieving side are also fairly captured
by the CFD. It is essential to have a physics based, high-fidelity solver around the near-blade

region to capture such unsteady flow characteristics.
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2.2.2 CFD with Free-wake method simulations and validation

The following figure shows the typical approach to employing the CFD+Free-wake
method. Here, the CFD solver is used for the near-body grid to accurately capture the physics of
flow characteristics around the blade, and a free-wake module is used to get the wake geometry
and the wake effect quickly. Then, the wake effect is fed back to the CFD solver using a field-
velocity approach. Compared to the other two methods, this method can generate results much

faster and has great potential for design purposes.

2.2.2.1 UH-60A High-speed Level Flight (c8534)
The UH-60A high-speed case (c8534) has a large advance ratio of 0.368, so the wake

effect will be expected to be small. The following figures show the comparison of blade loading
predictions (normal forces and pitch moment) from the CFD+Free-wake method with
CFD+Overset grid method and the flight test data.

Figure 2.12 shows the convergence history of the CFD+Free-wake method. For this high-
speed case, both methods converge very quickly, requiring only 6 iterations to get a fully
converged result. Actually, the CFD+Free-wake method converges even faster than the overset
grid method, needing only 3-4 iterations to approach a converged result.

The blade loading predictions are compared in Figures 2.13 and 2.14. It can be seen that
the CFD+Free-wake method agrees well with both the overset grid predictions and flight test
data. Particularly in the root to in-board region (Figures 2.13), the CFD+Free-wake method gives
slightly better predictions than the overset-grid method. This is because the free-wake module

has a root-wake component, while the overset grid cannot fully capture the root wake due to the
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grid resolution in that region. Around the tip region (Figure 2.14), the CFD+Overset grid
method gives a slightly better prediction than the free-wake method. This is due to the fact that
the full CFD method captures the physics of the transonic effect better than the free-wake

approach.
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Figure 2.12 Convergence History of CFD+Free-wake
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2.2.2.2 UH-60A Low-speed Level Flight (c8513)

The UH-60A low-speed case has an advance ratio of 0.149. Since it is a level flight
condition, the high-frequency BVI effect is not dominant for this low-speed case, and the force
variations are mostly low-frequency.

Figure 2.15 shows the convergence history of the CFD+Free-wake method for this low
speed case. It can be seen that for the free-wake method, the CFD/CSD coupling does not
converge to a single trimmed value. Eventually, the predictions jump between two values. As
shown in the figure, iteration numbers 5, 7, and 9 trend toward the same result, while iteration
numbers 6, 8, and 10 converge to another. Thus, the computational results from iteration 9 were
selected for the following comparisons since they were slightly closer to the experimental values
on the advancing side. However, both results are comparable to each other and the experimental
values on the retreating side.

Figures 2.16 and 2.17 show the normal force and pitch moment comparison for iteration
number 9 in Figure 2.15. The CFD+Overset grid method gives better predictions for this case on
the advancing side of the tip region. However, it is seen that the CFD+Free-wake method also
gives reasonable predictions for this low-speed case for most of the blade regions. Therefore, for
this kind of low-speed level flight, the CFD+Free-wake is still an appropriate method for fast

evaluations.
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2.2.2.3 UH-60A Dynamic Stall Level Flight (c9017)

UHG60-A case 9017 is a high-thrust, dynamic-stall case. This is a highly unsteady case,
with two wake induced stall regions on the retrieving side. Figure 2.18 shows the convergence
history of the CFD+Free-wake predictions. It can be seen that, after 10 iterations, the CFD /
CSD coupling almost converges to a single value.

However, the forces predicted by the CFD+Free-wake method do not compare with the
measured values as well as those predicted with the CFD+Overset grid method. As shown in the
Figure 2.19 and 2.20, the CFD+Free-wake method generally did not capture the two stall regions
on the retrieving side, while the CFD+QOverset grid method captured most of the stall regions.

Thus, for this kind of highly unsteady cases, the CFD+Free-wake method may not be a good
choice for fast evaluations.
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2.3 High-order Near-Blade CFD Algorithm Studies for Accurate Source Noise Prediction

For High Speed Impulsive (HSI) noise
prediction, the permeable surface (off-
surface) Ffowcs Williams — Hawkings (FW-
H) equation method (see Figure 2.21),
which is dependent on CFD to provide
sufficiently accurate, unsteady flow-field
data on the acoustic data surface, has
become popular. This approach has been
proven to give better predictions compared
with the traditional impermeable surface
(on-surface) method, because the noise
generated by the shock wave interaction can

be included in this method [2.4]. However,

Physical Blade
Surface

Permeable Surface
surrounding the blade
or
Acoustic Data Surface

Figure 2.21 High-order CFD scheme
provides sufficient spatial and
temporal accuracy to propagate
acoustic characteristic waves to the
acoustic data surface.

many of these first-principle CFD schemes suffer from numerical dissipation and dispersion
errors. Numerical dissipation causes a non-physical gradual decrease in the amplitude of an
acoustic wave during its propagation from source to acoustic data surface. Numerical dispersion
causes the acoustic waves of different wavelengths to propagate incorrectly at different speeds.

Because of these numerical errors, the waves may be distorted in a non-physical manner by the
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time they arrive at the acoustic data surface, so that the accuracy of the flow-field description on
the acoustic surface will be reduced. Hence, the far-field propagation based on the permeable
surface FW-H equation method will provide non-realistic solutions.

This activity entailed the implementation of the low dispersion and low dissipation
Symmetric Total Variation Diminishing (STVD) scheme developed by Helen Yee into the
current CFD solver. With a 6™ (or even higher 8™ order) spatial accuracy algorithm, and with a
2" order temporal accuracy scheme, the unsteady flow solutions and shock wave interactions
can be accurately predicted. Furthermore, this high-order near-blade CFD solver was coupled
with the proposed PVTM method, which resolves the transmission of the vortices into the rest of
the flow field, to accurately model the physics of the source of BVI noise.

In the baseline TURNS, Roe’s approximate Riemann solver [2.5] has been used for the

calculation of inviscid fluxes. Considering a cell face at i+1/2, in the Roe scheme, the flux Fia
is computed as:

Fio :%[Fi (9)+F () ]—%ﬂA@ @6

where the first part %[Fi(aL)+Fi(aR)] is the Physical Flux and the second part

(aR—aL)] is the Numerical Viscosity filter. In the baseline TURNS, the physical

2aq. s,
flux is solved with the Roe solver, which is second-order. The numerical viscosity filters are 3™
order MUSCL [2.6] (Monotone Upstream-Centered Scheme for the Conservation Laws), and 5"
order WENO [2.7] (Weighted Essentially Non-Oscillatory) schemes.

In the low dissipation shock-capturing schemes of Yee et al. [2.8], there are two steps.
The first step is the high-order spatial base scheme. The second step is the appropriate

characteristic-based filter to improve stability, shock and fine flow structure capturing. Thus, the
flux at i+1/2, Fi.1/> can be computed as:

Fi.12 = Base Scheme + Numerical Filter Term

For the base scheme, a sixth-order central difference scheme (STVD 6) is currently used:

sz%[&a ~8F,,, +37F.,+37F —8F , +F_,] ‘%MA@ el Ge—0)]
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For the numerical filter term, the MUSCL and WENO schemes included in the baseline
TURNS to dissipate the numerical viscosity are already good characteristic-based high-order
filters. Therefore, in the second step of STVD scheme, these numerical filter terms are retained
to simplify the implementation.

The results shown below compare combinations of these four different schemes, which
are MUSCL+ROE, WENO+ROE, MUSCL+STVD6 and WENO+STVDS6.

The test case for the high-order scheme is again the UH60-A high speed level flight. The
structural analysis using CAMRAD Il was included in the computation and coupling iterations
between CSD and CFD were conducted until the blade loading predicted by CFD converged.
The CFD code used here was the single blade TURNS code with a free-wake module as
described in the previous section. In the future, the free-wake module will be replaced by the
PVTM module and the code will be used for both high-speed and low-speed BV1 simulations.

Figures 2.22 and 2.23 show the normal force and pitch moment predictions of the four
different schemes (MUSCL-ROE, MUSCL-STVD6, WENO-ROE, and WENO-STVD6)
compared with experimental data. The results for the WENO and MUSCL schemes are similar.
However, the STVDG6 scheme gives slightly better predictions than the ROE scheme, particularly
when there is a large gradient like that at the tip region where transonic flow effects are present.

From the computational time perspective, for this high speed case, the STVD6 scheme
generally takes approximately 3% more time than ROE scheme. However, the WENO scheme
takes 24% more time than MUSCL scheme. So the MUSCL-STVD6 scheme was selected for the

current simulations.
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2.4 CFD+Overset grid Coupled with CSD for DNW High-speed Source Noise Prediction

For the whole CFD/CSD/Acoustic frame work testing, initial validations were performed
using the DNW wind-tunnel test data [2.9, 2.10]. Here, the CFD+QOverset grid method was used,
and the overset grid is shown in Figure 2.24. Compared to the UH60-A cases, a refined grid was
used with 4.82 million near-body grid points (4*155*139*56) and 5.69 million back-ground grid
points (4*69 *129*160).

The test case is a high-speed case
with advance ratio of 0.310 and advance
tip Mach number of 0.873. Figure 2.25
shows the convergence history, where 6
iterations are needed to obtain a
converged result.

Comparison of the predicted
force and moment coefficients with the
experimental data are shown Figures
2.26 and 2.27. It can be seen that for this
DNW high-speed case, both the lift and
pitch moment coefficient predictions

follow trends similar to the measurements.
Figure 2.24 The Overset Grid for DNW High-

However, the measured data shows some ) .
Speed Simulations

weak BVI effect on the advancing side
which is not captured by the CFD predictions with this grid resolution. Conversely, the shock
effect on the advancing side for this high-speed case has been captured.
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2.5 Simulations for HART Baseline Low-speed BVI Case with CFD+Overset and
CFD+Free-wake Methods

Simulations have also been performed for the HART low-speed BVI case using the
CFD+Overset Grid method. The refined grid was also used with 4.82 million near-body grid
points (4*155*139*56) and 5.69 million back-ground grid points (4*69 *129*160).

Figure 2.28 shows the convergence history with the refined grid, illustrating that the code
predicts a converged blade loading after 7 iterations with 2 revolutions per iteration. Blade
loading comparisons at the 87% span location are shown in the Figure 2.29. Here, the CFD/CSD
prediction does not capture the high-frequency BVI variations seen in the experimental data,
although the low frequency variations follow similar trends. Thus, it is expected that the BVI
noise will not be well predicted by WOPWOP3. For this case, the PVTM method is needed to
better capture the wake, or a very find grid is needed for the overset grid method to capture the

far-wake affecting the next blade.
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For this HART case, the CFD+Free-wake method was also used to predict the BV1 effects.

After a few tests, a refined grid (3.2 million grid points) was used, as shown in Figure 2.30.
The coupling iterations with CSD to get trim solutions were converged after 10 revolutions.
However, the predicted blade loadings show little of the BV effects as seen in Figure 2.31.
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Figure 2.30 The CFD-Freewake Grid
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Chapter |11

Particle Vortex Transport Method (PVTM) for Accurate Wake Modeling

Modeling the highly nonlinear convective - S ]
wake flow of rotorcraft is challenging. Two '

major approaches, full CFD overset grid method

and free-wake method, were investigated in Task
1 against a variety set of experimental data with
different configuration and flight conditions. It Figure 3.1 Gridless PVTM prescribes
has been found that, although the overall blade  and preserves evolution of wake from
loading predictions by CFD are in good rotor systems.

agreement with the flight test data for a wide range of flight conditions (high-speed, low-speed,
and dynamic stall), there are limitations in preserving the wake effects away from the blade for
these two methods, such as numerical dissipation and grid dependency.

There is another relatively new method to model the vortex, the Vortex Transport Method
(VTM) [3.1], which solves vortex transport equations to determine the evolution of the vorticity
field on a uniform Cartesian grid. The approach satisfactorily models the evolution of the
vorticity field, but the vortex source used is derived from a simplified 2D aerodynamics model.

The Co-I, Dr. Phuriwat Anusonti-Inthra, developed a combined approach under another
NRA contract (NNLO7AA32C). This approach uses CFD in the vicinity of the rotor blades to
capture the generation of the vortices, and PVTM to resolve the evolution of the vortices in the
rest of the flow field (see Figure 3.1). The fully-coupled CFD-PVTM is implemented by
appropriate information exchange between CFD and PVTM at every time step. This approach
for wake capturing is relatively new and requires further investigation and validation.

In this task work, this fully coupled CFD-PVTM approach was used to model the wake
flow from the rotor systems. A series of systematic and comprehensive validations was
conducted to assess modeling limitations and to improve the accuracy and efficiency of the

approach.
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3.1 UH60 simulations using coupled CII/TURNS/PVTM method

The coupled CII/TURNS/PVTM methodology was applied to simulate two UH60 cases
(c8534 and ¢8513). The near body grid for UH60 blade used by TURNS is presented in Fig. 3.2.
The grid has about 1.6 million points and extends about 1 chord length in all directions, except
behind the blade tip where the grid only extends about 0.5 chord. The variations in blade
profiles and twist distribution of the UH60 blade grid are shown in Fig. 3.3. The PVTM cell
resolution is 0.5 chord. A loose coupling methodology is used to obtain coupled trim solution.
More detailed explanations of the PVTM method and the validation results with UH60 forward
flight data can be found at Ref. 3.2.

UH60 Case c8534

Simulations for case c8534, x = 0.34, are obtained using a coarse PVTM grid. The PVTM grid
for this case is shown in Fig. 3.4. With the PVTM grid, the finest resolution zone covers about 2
full revolutions of the rotor wake. Nine coupled trim iterations are simulated, and the
convergence history of the trim parameters and vehicle trust are presented in Figs. 3.5 and 3.6,
respectively. The results are shown using 5 and 20 TURNS sub-iterations. It is observed that the
20 sub-iteration run converge to different trim values. The comparison of the resulting rotor
blade normal force and the experimental data at nine radial stations is presented in Fig. 3.7.
Overall the correlations of the blade normal force are good for all radial stations. The 20 sub-
iteration results provide slightly better correlation than the 5 sub-iteration results. The vorticity
field results are shown in Fig. 3.8. Overall, the vorticity fields with 5 or 20 sub-iterations are
similar, with only slight differences in the vorticity with the wake age of more than 1 revolution.
UH60 Case c8513

For case ¢8513, i = 0.1489, the coupled simulations are obtained using 20 sub-iterations for
TURNS and the same PVTM grid system (Fig. 3.4). The convergence history of the thrust and
trim parameters are given in Fig. 3.9. The blade normal force correlation between the simulation
and experimental data as seen in Fig. 3.10 is generally good, except at a few radial stations.
Another comparison of the normal force predicted from CFD/PVTM simulations with full CFD
and CFD/free wake results are shown in Fig. 3.11 for completeness. The converged vorticity

field results from PVTM in Fig. 3.12 show the presence of super-vortices behind the rotor.
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(a) with 5 sub-iterations
Figure 3.8 Converged vorticity field (UH-60A c8534)
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(c) Top view
Figure 3.12 Converged vorticity field (UH-60A ¢8513)
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3.2 HART Il simulations using coupled CII/TURNS/PVTM method

The coupled CII/TURNS/PVTM method was also used to simulate the HART I baseline
case [3.3], descent condition at # = 0.15. The near body grid for TURNS and the blade twist
profile are shown in Figs. 3.13 and 3.14, respectively. A wind tunnel trim is used to simulate the
wind tunnel test condition. The TURNS grid has about 1.5 million cells. The case is simulated
using low and high PVTM resolutions.

Low Resolution PVTM

The low resolution PVTM cells are similar to the one described in Fig. 3.4. The convergence
history of the thrust and trim parameters are shown in Fig. 3.15. The comparisons the normal
blade force and the experimental data are given in Figs. 3.16-17. The only experimental data
available is for one radial station (r/R = 0.87). The correlation of the converged low resolution
result is fair. Some BVI events are observed in the first and fourth quadrants for the blade, but
the magnitude and duration of the events are very different from the experimental data. Figure
3.18 shows the converged vorticity field for this case. The super-vortices behind the rotor are

apparent.

High Resolution PVTM

The high resolution PVTM grid structure is shown in Fig. 3.19. Two sets of high resolution
results are presented with different initial conditions: (A) using the converged low resolution
wake results as the initial condition, (B) using no initial wake. Figures 3.20-22 show the results
from the Case (A). It is seen that the trim variables obtained from the converged low resolution
PVTM wake is very different from the required trim for high resolution PVTM wake. However,
the high resolution results are still not converged. The normal force comparison is presented in
Figs. 3.21-23. Slightly better correlation is seen for the high resolution results than the low
resolution results. Case (B) results are presented in Figs. 3.23-24. The converged high resolution
results and the acoustic predictions were not available for this final report, but they will be sent

for a paper publication in the future.
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Figure 3.21Comparison of blade normal force (HART II: BL, high res. A)
(oo: exp. data, --: intermediate results, --: last CFD/CSD/PVTM result)
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Figure 3.22 Comparison of blade normal force at r/R = 0.87 (HART II: BL, high res. A)
(oo: exp. data, --: intermediate results, --: last CFD/CSD/PVTM result)
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Chapter IV

Improved and Efficient Interfaces with Acoustic Propagation Codes

Another essential element in the MUTE
. . .. ..;r;,-,* IMAX .-f .
tool is the noise prediction code. Currently, L

I
of TS
WOPWOP3 (also known as PSU-WOPWOP) IMIN ?
[4.1] provided by LaRC has been used as the main \‘ "

acoustic propagation code. WOPWOP3 solves

Without Control With ngh Harmonic Control
Farassat’s retarded-time formulation 1A [4.2] of the

Ffowcs Williams-Hawkings (FW-H) equation [4.3] Figure 4.1 Noise propagation from the
rotorcraft to observer locations

n mputes the rotorcraft tone noi t given ) i
and computes the rotorcraft tone noises at give i the far-field.

observer locations. These predictions are based on
the blade loading on an impermeable surface or the unsteady flow-field description provided by
CFD simulations on a permeable surface.

The traditional method of rotor noise propagation uses the rotor blade surface as the
acoustic data surface, which is an impermeable surface. The blade loadings provided either by
the comprehensive analysis (CAMRAD Il) or the CFD (TURNS) are integrated into the FW-H
equation as the source term. This method can accurately propagate and calculate the thickness
noise and loading noise. However, for high-speed cases when the high-speed impulsive (HSI)
noise is dominant, errors are incurred with the impermeable surface method because the
quadrupole term from the shock wave interaction is not included in the FW-H equation. Thus,
recently, a new method of using the FW-H equation on a permeable surface was developed
within WOPWOP3. With the availability of an accurate flow-field description on this permeable
acoustic data surface from the CFD, it is expected that this approach would improve the accuracy

of the HSI noise prediction.
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4.1 DNW High-Speed Noise Prediction with Impermeable Surface Method and Permeable
Surface Method

Wind
Top View
° ° )
Mic. 1 Mic. 7
. | |
Side View R

Figure 4.2 The Acoustic Experiments Set-up (Microphone 1 & 7)

In the DNW High-speed data set [4.4], some acoustic measurements are also available for
comparison. As seen in Figure 4.2, the acoustic sound pressure from two microphones
(Microphone 1 and 7) are recorded. These two microphones are located ahead of the rotor blade
and in the same plane as the rotor surface.

Figures 4.3 and 4.4 show the time averaged total sound pressure read by microphones 1
and 7 in the experiments. In these two figures, the high-negative peak is due to compressible
flow effects which include the shock wave interactions. The noise due to vortex interactions can

also be seen clearly in the experiments
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Two acoustic prediction methods were used for the acoustic analysis with WOPWOP3,
the impermeable surface method and the permeable surface method. At first, the impermeable
surface method with compact loading patches is used, where the blade surface loadings (Cn, Cd
and Cm) at each span location are used to obtain the acoustic signature at the observer points.
As shown in Figure 4.5 and 4.6 for both Microphone 1 and 7, the impermeable surface method
with loading patches did not fully capture the negative peak of the HSI noise, nor did it capture
any of the vortex effects. Subsequently, the impermeable surface method with surface pressure
as input was used, as shown in Figures 4.7 and 4.8. When using the surface pressure for the
impermeable surface method, some improvement of the negative noise peak predictions was
obtained. However, it is still below the measured levels and the noise due to the vortex effects
was not captured.

For the permeable surface method, four different sized acoustic data surfaces (ADS) were
chosen to investigate the effects of the permeable surface size on the acoustic predictions. The
first one, referred to as the original surface, was used to verify the accuracy of the interface codes
and WOPWOP3 input. The grid index range of the original surface, relative to the near-body
CFD grid, is: | from 11 to 123, J from 5 to 125, K from 1 to 43, where | is the chord-wise
direction, J span-wise and K normal directions. Three additional ADS grids were extracted from
the CFD solutions for comparisons, where for Grid 1, | ranged from 9 to 125, J from 5 to 125
and K from 1 to 44; for Grid 2 | from 8 to 126, J from 5 to 125 and K from 1 to 43; and for Grid
3 1 from 10 to 124, J from 5 to 125 and K from 1 to 43. Figures 4.9--4.11 show the comparison
of the original grid with the additional grids. The acoustic predictions at Microphone 1 for these
four acoustic data surfaces are compared at Figure 4.12. It is seen that the predictions using the
original surface and Grids 2 and 3 are quite similar. However, a larger negative peak is predicted
with Grid 2 because the aft surface of Grid 2 surface is farther away from the blade trailing edge
and can capture more of the shock wave effects. The Grid 1 predictions are the least accurate,
owing to the larger distance from the blade surface and therefore greater numerical dissipation of
the aerodynamic input.

For the permeable surface method, Figure 4.13 shows the prediction comparisons at
Microphone 1. It is clearly seen that the permeable surface method can not only capture the high
negative peak due to the shock wave interaction, but can also capture a good deal of the noise

due to the vortex interaction. Figure 4.14 shows the comparisons for Microphone 7 predictions.
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Here, the predictions for the permeable surface method are much better than those obtained with

the impermeable surface method, as the noise due to the vortex interactions is also captured.
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Figure 4.9 Acoustic Data Surface (Baseline-Grid vs. Grid 1)
(Red — Blade; Blue — Baseline Grid; Yellow — Grid 1)
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Figure 4.10 Acoustic Data Surface (Baseline-Grid vs. Grid 2)
(Red — Blade; Blue — Baseline Grid; Yellow — Grid 2)
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Figure 4.11 Acoustic Data Surface (Baseline-Grid vs. Grid 3)
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Figure 4.12 WOPWOP3 Predictions for Different Acoustic Surface Grids
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4.2 HART |1 BVI Noise Prediction with Impermeable Surface Method

The aerodynamic parameters on the blade surface predicted with the above methods
(CFD+Overset grid, CFD+Free-wake method and CFD+PVTM) were used to obtain the acoustic
signature on a microphone plane below the rotor disk. Because the BVI noise is mostly
generated by the blade surface pressure variation, the impermeable surface method was used to
predict the acoustic signature on the microphone plane. As mentioned above, there are two
different approaches available in WOPWOP3 for specifying the blade loading for the
impermeable surface method. One uses the surface loading compact patch, while the other uses
the surface pressure directly. Both of these methods were investigated to check the accuracy of
the acoustic predictions.

Figure 4.15 shows the BVI SPL contour from the experiment [4.5], where the two BVI noise
peaks on the advancing side and retrieving side are clearly observed. The microphone plane in
the experiment, located 2.215 meter below the rotor disk with an area of 8 meter * 5.4 meter, is
also presented here.

Figure 4.16 shows the BVI SPL contours from the CFD+Overset Grid method, where 4.16(a)
is the acoustic signature obtained using compact patches and (b) is from the pressure. As shown
in these figures, the BVI noise predicted with the overset grid method does not generally agree
well with the measured data, due at least in part to insufficient grid resolution. Also, the
maximum noise predicted with the compact patches is well below the levels obtained using the
surface pressure. This indicates that the compact patch method may not be optimal in this case.

Figure 4.17 shows the contours from the CFD+Free-wake method, where the noise peak
location also differs from that seen in the experiment.  As shown in Figure 4.17(b), two
maximum BVI noise peaks are predicted by the CFD+Free-wake method. However, the
directivity (i.e, locations of the maximum noise levels) differs from the experiment
measurements. Additionally, the predicted maximum BVI noise levels are also lower than the
experimental values.

Figure 4.18 shows the contours from the CFD+PVTM method with a low resolution wake.
Again, the acoustic prediction using the compact patch approach does not compare well with
measured levels as seen in Figure 3.18(a). However, using the surface pressure produces

predicted BVI SPL contours that compare much more favorably with measurement for both the
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maximum noise level and location on the advancing and retrieving side. Direct comparison with
the measured contours is shown in Figure 3.19 for further clarification.

Tunnel Wind .
Rotor Disk Plane

Am ; ] (Radius = 2m)

Microphone Plane
2.215 m below the
rotor disk

4m

27m 2.7m

Figure 4.15 Experiment BVI SPL Contour

(a) Loading (b) Pressure
Figure 4.16 BVI SPL Contour with CFD+Overset Grid Method
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(@) Loading | (b) Pressure

Figure 4.17 BVI SPL Contour with CFD+Free-wake Method

(a) Loading (b) Pressure

Figure 4.18 BVI SPL Contour with CFD+PVTM Low Resolution Wake
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(a) Experiments (b) PVTM_Low_Resolution_Wake

Figure 4.19 BVI SPL Contours Comparison with PVTM Method
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Chapter V

Concluding Remarks

This report summarizes the development and validation of a physics-based, high-fidelity,
multi-disciplinary tool (MUTE) for accurate and efficient rotorcraft source noise predictions. The
MUTE tool uses a systematic coupling of approaches from multiples disciplines. Namely,
Computational Fluid Dynamics with high-order near body algorithm(STVD 6), a high-fidelity
wake modeling method (PVTM), Computational Structural Dynamics with feedbacks of the
rotor blade deformation information and rotorcraft trim solutions, and high-fidelity acoustic
propagation analysis are incorporated. This coupled CFD/CSD/Acoustic procedure is very
flexible and controlled by a Python script, so that these CFD, CSD or acoustic modules can be
easily replaced with other similar codes. The blade loading and acoustic signature predictions
from the MUTE tool are compared with several experimental data sets with a wide range of
flight conditions.

Three wake modeling/capturing methods were implemented into the MUTE tool for
different applications: the free-wake method, the overset grid CFD method, and the PVTM
method. The rotor blade aerodynamic loading predictions from these wake modeling methods
were validated against the UH60A, DNW and HART Il experimental data under high-speed,
low-speed, and BVI flight conditions. The results show that, in the absence of strong blade
vortex interaction, all wake modeling methods produced reasonable blade loading predictions
when the CFD was coupled with CSD to include the blade deformation information (e.g., such as
the UHGOA level flight test cases).

Compared with the other wake modeling methods investigated, the free-wake method
was the fastest for most of the high-speed and low-speed level flight simulations when the blade
wake interaction was minimal. The CFD with overset-grid method would generally be the most
robust method over the flight conditions considered. This would also be the case for the UH60a
dynamic stall condition, provided the CFD background grid resolution was high enough to
preserve the far wake traveling inside the computational zone. However, this would require
considerably more computational resources. With the limited computational resources employed
in this study, the PVTM method was the most efficient way to preserve the wake in the far-field
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and accurately predict the rotor wake blade interactions. For the HART Il BVI test case, only the
PVTM method gave reasonable predictions at coarse resolution.

The acoustic predictions of the MUTE tool were also validated with the DNW high-speed
noise experimental data and the HART Il BVI noise data. In the acoustic analysis using
WOPWOP 3, both the impermeable surface and permeable surface methods were implemented
into the MUTE tool. The results show that, to capture the high-speed impulsive noised produced
by the shock wave interaction, the permeable surface method gave much better predictions than
the impermeable surface method. For the BVI noise prediction, the wake modeling method was
very important for the accuracy of the noise predictions, and the PVTM method gave the best
results for this case.

The accuracy of the noise prediction was greatly dependent on the accuracy of the blade
loading and rotor wake simulation results. Compared to the very fine grid resolution
requirements of the CFD overset grid method, the PVTM method has more potential in
accurately modeling the rotor blade and wake interactions with reasonable computational
resource requirements. Improvements of the PVTM computational efficiency may significantly
improve the correlations and further reduce the computational costs in the future.
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